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Brain Stem Neuronal Noise and 
Neocortical "Resonance" 

Arnold J. Mandell  I and Karen A. Selz ~ 

We present a qualitative model and data in evidence for the selection and 
stabilization of neocortical brain-wave power spectral modes by slow periodic 
and fast noise driving by brain stem neurons. Unlike noise effects in a bistable 
potential, increasing noise amplitude via more brain stem neurons increases the 
measure on unstable manifolds trapped in the saddle-sinks of the neural mem- 
brane attractor and increases dwell times. We suggest that the effect of noise in 
expanding dynamical systems such as the generalized neuronal membrane equa- 
tions studied here may be analogous to that of many-frequency quasiperiodic 
driving which leads to the stabilization of the EEG as a strange, nonchaotic 
attractor. 

KEY WORDS: Brain waves; neurons; stochastic resonance; strange non- 
chaotic attractor; quasiperiodic driving; noise. 

1. I N T R O D U C T I O N  

Using ergodic  dynamica l  measures ,  (the g rowth  rate of the longest)  run 
statistics,  and  the h igher  momen t s  of p robab i l i t y  densi ty  d is t r ibut ions ,  we 
have been able to  d i scr imina te  a m o n g  the pa t te rns  of ind iv idua l ly  recorded,  
in terspike  interval  sequences of four  neu roana tomic a l l y  and  neurochemi-  
cally dis t inct  b ra in  stem neuron  types. (1) Due  to the i r regular i ty  and  
average frequency ranges of their  in terspike  interval  pa t t e rns  and  the diffuse- 
ness of  the d i s t r ibu t ion  and influence of  their  axona l  endings t h roughou t  
the brain,  these (and add i t iona l  b ra in  stem cell types to be discussed here)  
can be viewed as roughly  ana logous  to "noise sources" modu la t i ng  g lobal  
b ra in  dynamics .  (2) 
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Of interest here is how these brain stem noise systems regulate the 
dynamics of neocortical pyramidal cells responsible for the brain wave 
patterns (electrovoltage potential variations with time, recorded from the 
surface of the brain or scalp and reference site) which are closely associated 
with and help define levels of consciousness, including sleeping, waking, 
dreaming, relaxing, attending, and excited states. (3'4) Recent applications of 
a model involving noise-induced information transport in a nonlinear, 
bistable, weakly periodically driven, simple sensory nerve system (5'6) 
suggest attempts at generalization to more realistically complicated multi- 
modal integrative brain functions. Although neuronal representation via a 
bistable potential is apparently relevant to peripheral and central brain 
sensory mapping systems, even a two-neuron, negatively and positively, 
self- and other coupled, nonlinear system can (like much larger real 
neuronal networks) express the variety of dynamics that are known to exist 
in invertjble and noninvertible diffeomorphisms of the plane. (7) 

The role of brain stem noise "irregularity" in the selection and 
temporary stabilization of the "regularity" in brain wave modes and states 
of consciousness has been a long-standing problem in behavioral neuro- 
science. (8) Electrolytic destruction in these brain stem systems generates a 
comatose state in the experimental aniimal without arousability through 
any form of sensory stimulation. However, coma can be temporarily 
reversed into a variety of "higher levels of consciousness" dependent upon 
the frequency, wave form, and amplitude of the electrical stimulation 
through electrodes placed in front of the lesion. 

The loss of brain stem and related diffusely projecting neuronal cell 
systems in humans is associated with deficits in what are called "funda- 
mental functions" such as maintenance of attention, concentration, sleep, 
arousal, motivation, and accuracy and rate of information processing, all in 
a class of neurological syndromes called the subcortical dementias. ~ 

Changes in brain function with age and their potential for retardation 
or reversal can be approached within the context of stochastic-like, brain 
stem neuronal dynamics. (1~ 

2. D W E L L  T I M E S  IN N E U R O N A L  M E M B R A N E  
S A D D L E - S I N K S  

Interspike interval patterns in some sensory systems in response to 
weak periodic stimulation demonstrate exponentially decaying dwell-time 
density distributions p(v) peaked at all or odd-integer multiples of the 
amplitude (m), frequency (cot), (weak) driving with m sin(cot) in the 
presence of (assumed) delta-correlated (or colored) noise ~(t), much like 
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those observed in simulations of Langevin-like equations representing a 
bistable potential of the general form d x / d t  = x - x 3 + m sin(cot) + ~(t). (5'6) 

Although two-state, "all-or-none" neuronal activation patterns have a 
distinguished history in theories of neuronal information transport,(m and 
modern patch-clamp theory approaches the issues of neural membrane 
channel conductances as a Markov statistical problem in "open versus 
closed," two-state dynamics, (12) evidence is emerging that even "molecular" 
ion channel dynamics involve multiple characteristic times that scale 
"fractally, ''~3'14) that is, p(r) ~ exp(-ktB), 0 ~</~ ~< l, suggesting attractors 
of the neural membrane dynamics that are more complicated than one- 
dimensional anharmonic potentials with periodic forcing, damping, and 
noise. 

Intermittency (irregular alterations between near periodic and 
aperiodic recurrent behavior), characteristic of systems near inverse saddle 
node bifurcations and homoclinic tangencies, is seen as "bursting" patterns 
in time series of neuronal firing and the episodic waxing and waning of 
brain-wave amplitude-frequency relations called spindle bursts. These 
behaviors are more typical than the n-periodic interspike interval patterns 
of classical stochastic resonance. (~5,16~ 

The brain stem neuronal noise sources to the brain-wave nonlinear 
oscillators range in frequency from 0.5 to >130 Hz, with two or more 
characteristic (average) frequencies. These are transmitted "upward" via 
axons, sometimes projecting from neighboring cells in the same nuclei in 
the lower brain to the same regions in the neocortex, suggesting the phrase 
"quasiperiodic noise driving of the neocortex. ''(17) 

A qualitatively realistic representation of the time dynamics of neural 
membranes, single neurons, and "global" brain-wave-generating neural 
membranes, then, is a generic, nonautonomous, highly nonlinear relaxation 
oscillator with parameter values such that recurrent orbits visit critical point 
regions on the (vertical) slow manifold of phase space which are subject to 
an attractive-repulsive conflict ("saddle-sinks") (18~ between faster neural 
activation potential "spike" transitions on the (horizontal) fast-manifold to 
the next saddle-sink. Noise-amplitude-sensitive density distributions of 
regional (s) "dwell times" ps(~) results. 

Neurophysiologically, p,(r) reflects preactivation refractoriness to 
excitation, including repolarization-depolarization processes subject to 
subtle neurochemical and metabolic influences (e.g., sensitization and 
habituation) over longer time scales and otherwise apparently adiabatically 
removed from the time series of observables. ~2~ With the inclusion of these 
longer time scales, a membrane in a state of excitation will be more likely 
to output bursts (instead of single discharges) in response to perturbation. 

If it exists, an invariant probability measure representing (up to a 
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renormalization of time) the frequency and duration with which regions in 
phase space are visited over the time evolution of a dynamical system is a 
physical, natural measure; on uniformly hyperbolic (divergent), exponen- 
tially mixing attractors, this is known as the Sinai-Ruelle-Bowen (SRB) 
measure. (19) In nonuniformly hyperbolic systems, such as the ones reported 
here, little is known, such that measures such as p,(v) are made empirically 
from numerical and real experiments. We will focus on nonnormalized 
observables directly using a histogram of phase-space regional dwell times, 
h~(~). 

The model with relevance to both the membrane dynamics of a single 
neuron and the global membrane dynamics of brain waves (21'16) is the 
prototypic nonautonomous van der Pol relaxation oscillator (18) with noise, 
which we study on an EAI-680 analog computer as 

d2x - r ( x  2 1 dx 
dt 2 - - ) - ~ - x + c o r f l c o s ( c o t ) + c c f ( t )  

with r = 21.5, fl = 205, co = 0.6 Hz, and f ( t )  is colored noise at 60 Hz with 
noise amplitude ct, being the parameter of interest. 

The rather contrived values for r and /3 resulted from searches for 
parameter regions where relatively stable multiple preloop toroidal 
"wrinkles" could be observed. This prechaotic state lives near homoclinic 
tangencies between stable (W ") and unstable (W u) manifolds in which 
small amounts of noise can be dynamically decisive. The two orders of 
magnitude difference between co and f ( t )  simulates the relative range of the 
slow periodic driving and fast noise dorsal raphe-hippocampal cortex 
brain-stem neuronal driving systems (data from Kocsis and Vertes, 1992, in 
preparation) discussed below. In addition, the very slow periodic driving 
term co has validity with respect to the differential system in light of the fact 
that output frequencies can be as much as 400 times the input frequen- 
cies (22~ and, as in any nonlinear system, not necessarily harmonic. 

Using the method of matched asymptotic expansions and partitioning 
the saddle-sink region into four different relatively homogeneous areas 
(sl 4, sl being the subregion of slowest orbital transit), Grasman et al. ~=) 
found that without 7~(t), the system in s~ required rescaling with respect 
to two independent time dependences." the dwell time within each subregion 
(a function of r and/3) and the inverse frequency within it [dependent on 
cos(cot) and/3] in order to obtain solutions. Our addition of colored noise 
results in a third independent time dependence involving ~r with respect 
to the distribution of saddle-sink dwell tifnes hs,(r), and this along with the 
large nonlinearity and multiplicity of extrinsic times required numerical 
simulation for even qualitative explication. 

Figure 1 portrays representative results comparing the changes in the 
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geometry of the x versus dx/dt phase plots with their associated hst in the 
boxed saddle-sink region, including Grasman's subregion of longest orbital 
transit time. (n) These two symmetric regions in phase space have been 
called saddle-sinks because they represent a region of intersection of the 
annular contraction onto the vertical slow manifolds from inside and out- 
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Fig. 1. Noise amplitude changes the pattern of dwell times in the saddle-sink region of the 
global neural membrane model. Phase portraits of the digital reconstructions of an EAI-680 
analog computer simulation of the highly nonlinear, periodically driven, van der Pol equa- 
tions over the indicated increases in the noise amplitude term ~ (see text for the equation and 
the parameter values). The saddle-sink areas (Grasman area sl) studied with dwell time 
histograms are indicated by the boxes. With increasing cg qualitative changes in the phase 
portrait from multiple folds ("wrinkles") to smooth loops are observed associated with 
transitions from dwell time distributions with a single average, to a multimodal pattern, to a 
bimodal combination of short and long times. Stretching the unstable, slow, vertical, 
manifolds trapped in the saddle-sinks is postulated to be the global topological mechanism for 
the observed increase in dwell times with noise. 
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side the recurrent orbit bundle (i.e., actions along the stable manifold, W') 
and divergence in an up-and-down shuffling motion vertically along it (i.e., 
actions along the unstable manifold, W"). This can be seen to be analogous 
to the topological arrangement of orbits at a saddle node, WUc~ W s, but 
here the contracting action W s is the dominant one, thus the addition of 
the word "sink. ''(18) 

In over 40 analog computer experiments (the smooth record digitized 
at 1 kHz for studies of the relative hs~) in the parameter neighborhood 
indicated above, only these three general patterns of hsl w e r e  observed in 
relationship to the degree of dominance of "wrinkles" versus "loops" in the 
attractors: (1) Top graphs ( e =  1.0): a continuous hs~ with an obvious 
average value which is associated with an orbital geometry characterized 
by a one-orbital bundle into and out of a singular "wrinkle"; (2) middle 
graphs (ct = 1.4): a h,x reflecting multiple routes through the phase space 
box containing both wrinkles and loops of the attractor, suggesting three 
clusters of values (short, medium, and relatively long); (3) bottom graphs 
(c~ -- 2.0) with an hsl signature of bursting intermittency, a mix of long and 
short dwell times associated with a geometry dominated by overlapping 
loops with fast and slow transit times through the saddle-sink region. 

Generally, we have found that increasing the noise amplitude parameter 
increases both the length and the density of the longest dwell times in the 

saddle sink. This is clear in the hsl of Fig. 1. This finding is in contrast to 
what we might expect for noise amplitude and switching time in a bistable 
potential. 

The three h~ patterns of Fig. 1 are more characteristic of interspike 
interval (ISI) histograms of brain stem neuronal systems (23'24t than the dis- 
tribution of odd or all-integer, n-periodic ISI of stochastic resonance. (5'6) In 
the context of the global membrane equations of neocortical brain waves, 
these three patterns of h,~ are analogous to the single dominant mode, mul- 
tiple mode, and "spindle burst" electroencephalographic patterns common 
to human and animal recordings. (25) Consonant with the mechanisms of a 
more generalized idea of stochastic resonance, noise amplitude is serving 
the function of selection and stabilization of ISI brain wave relevant h~x. 

. A T O P O L O G I C A L  M E C H A N I S M  FOR I N C R E A S E S  IN 
S A D D L E - S I N K  D W E L L  T I M E S :  S T R E T C H I N G  T H E  
SRB M E A S U R E  ON W u 

Attracting sets like those in Fig. 1 tend to be unions of W u. The W s 
can be said to "iron down" the orbits along the stretching directions of the 
attractor composed of UW u. As noted in Fig. 1, the saddle-sink regions 
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studied with respect to hsl are those in which the foliations of W u are 
"trapped" between those of W s. The SRB measure (when constructable) 
measures the time spent (i.e., densities of the orbits) in regions in phase 
space, and would then be some approximation of a smooth measure on the 
attractor along the stretching, unstable direction W u. A small amount of 
stochastic perturbation c~f(t) would be expected to increase the measure of 
W u beyond that of the dynamical system without noise, and influenced by 
the deterministic vectorial direction fields, appear to stretch the occupied 
region further. (26-28~ 

That  is, additive noise increases the density of points "trapped" on W u 
in the saddle-sink and increases the densities and sizes of the longest dwell 
times in hs~. This idea is consistent with the results of numerical simulations 
graphed in Fig. 1. The effect amounts to something beyond stochastic 
stability with respect to saddle-sink dwell times, and serves as one source 
of a theory for explaining how brain stem neuronal noise has (for many 
decades) been observed to make the perceptual, motor, and cognitive 
functions attributed to the neocortex more coherent. (29~ 

To demonstrate the noise-induced W u stretching directly, Fig. 2 
represents the results of a numerical study of a discrete van der Pol map 
driven by a period seven (specifically, 2 =  3.701769) of the Metropolis-  
Stein-Stein periodic orbits of the logistic map [f(co) = 2(o9 - c o 2 ) ]  (16) plus 
6-correlated equiprobable noise c~f(t). Results are graphed from numerical 
studies in a homoclinic-near-tangency-like parameter region, in a "bubble" 
neighborhood (r = 1.963-1.964,/~ = 0.315) (top left) of "antimonoticity, ''(3~ 
that is, in a region of parameter space where there is simultaneous creation 
and destruction of periodic orbits across increasing parameter r, in a 
regime analogous to that of the wrinkled torus studied in the continuous 
case (see Fig. 1). The system is 

X t + l - - ~  y t - - r  X t -  

Y , +  l = - -  X,_]_ gfl COS((/)/') ~- c~f( t )  ?" 

with the source of co for each time step as indicated above. 
Figure 2 demonstrates that increasing the noise amplitude term e in 

the discrete map results in smoothing and stretching of the period-7 
doubled point set along W u postulated to be the mechanism of noise- 
amplitude-increased saddle-sink dwell-time length in the smooth attractor. 
The (unseen) vector field of W s compresses and smooths the noise down 
onto W ", which, in turn, stretches it. (26~ Measures that are continuous 
along unstable directions, the (combination of) SRB measures on the 
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dx 
x versus dt phase portraits of attractor with increasing noise amplitude 

Fig. 2. Noise amplitude stretches the unstable manifolds of a discrete, periodically-driven 
van der Pol expanding attractor, the topological mechanism postulated to be responsible for 
the increases in the longest dwell times observed across increasing noise amplitude in Fig. 1. 
The results of studies of a discrete van der Pol-like map driven by the quadratic map of the 
unit interval at a parameter value of 3.701769 (a period seven) with additive b-correlated 
equidistributed noise. The system was studied in a near homoclinic tangency regime, a Yorke 
"bubble" of creation and destruction of periodic orbits seen in the bifurcation plot in the 
upper left (see text for the equation, parameter values, and interpretation). 
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pieces of  W "'(2v'28) are  then increased with increasing noise ampl i tude  c~. 

F igure  2 serves as one exp lana t ion  for the results  in Fig. 1, though,  of 
course,  unl ike the con t inu i ty  of  s t re tching- induced wrinkles and  loops  in 
the smoo th  system, a discrete m a p  generates  poin ts  which j u m p  discon-  
t inuous ly  a m o n g  the pieces of W", such that  c ompu ta t i ons  of h,l in any  
small  box in this system is wi thout  the same meaning  as those made  on the 
con t inuous  system. 

It  can be said more  general ly  that  the a sympto t i c  SRB measure  of an 
a t t rac t ing  set of an expand ing  dynamica l  system is selected by the noise 
~f( t)  {here f ( t )  is ~-correlated,  equ ip robab le  noise on [0, 1] } as c~ ~ 0. A 
simple example  is the F e i g e n b a u m  nonchao t i c  fractal  set at  the 2 n per iod-  

doub l ing  accumula t ion  po in t  of  f i x )  = rx(1 - x)  + cr r = 3.56995, seen 
in Fig. 3 for c~=0, 0.001, and  0.1. The loca t ions  of neighbor ing,  2 n per iod ic  
repel l ing poin ts  are out l ined  by the empty  intervals  of the h i s tog ram as 
c ~ 0 .  

As the converse,  the condi t ion  tha t  the l imit  set no t  be zero as e ~ 0 
has been used as a defini t ion of  an a t t r ac to r  of a dynamica l  system.! 31) 
It is f rom the s t andpo in t  of noise selection and  s tabi l iza t ion  of the l imit  
sets of (nonl inear )  expand ing  dynamica l  systems (32) that  we view bra in  

stem neurona l  noise regula t ion  of neocor t ica l  e lec t rophys io logy  and  
function.  (3, 4,16) 

o~ = 0 . I  c~ = 0.01 

PL 
o ,hi 

or = 0 .001  

nl,nl II i ~ ,i, ,lnl nl 
c ~ = 0  

Fig. 3. As in Fig. 2, an example of the selection of the invariant measure in an expanding 
attractor by 6-correlated equiprobable noise amplitude as c~ ~ 0; the quadradic map of the 
unit interval at a parameter value of 3.56995, the fractal, nonchaotic set at the period doubling 
accumulation point. We conjecture that this noise effect may be analogous to that of the 
2- and 3-frequency quasiperiodic driving stabilization of toroidal strange, nonchaotic 
attractors (see text for references) and may serve as a metaphor for the way brain stem noise 
selects and stabilizes power spectral broadband modes of the global neural membrane 
dynamics of brain waves. 
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4. THE BRAIN W A V E  B R O A D B A N D  M O D E S  AS NOISY,  
S T R A N G E ,  N O N C H A O T I C  L IMIT  SETS 

There has been a considerable amount of unresolved debate about the 
neural origins and physiological significance of the electroencephalographic 
(EEG) measurements of time-dependent microvoltage potential variations 
as recorded from electrodes placed on the neocortex and scalp. In spite of 
this, there is a remarkable consistency in the reports of the characteristic 
power spectral broadband modes that can be observed and their relative 
dominance in operationally defined states of consciousness. (25'29'33'34) 

Described characteristically in the frequency domain and with Greek 
letter labels, the dominant broadband power spectral modes of the EEG 
and their associated states are: A-~ 3 Hz, deep sleep or coma; 0 ~ 6 Hz, 
light sleep or day dreaming; ~_12Hz,  relaxed, eyes closed, awake; 
f l~25 Hz, aroused, very alert, and excited; and 7~ 35-50 Hz, regional 
evidence of very focused attention; 100- and even 200-Hz records have also 
been reported. (34) Of course, in the time domain, one could describe these 
modes as a period-doubling progression in seconds: 0.33, 0.166, 0.083, 0.04, 
0.02, 0.01,.... This period doubling can be seen along with period adding in 
parameter regions near torus breakdown through wrinkling. 

It is productive to think about the EEG power spectral broadband 
modes in the context of the period-doubling scenario since it is known that 
increasing brain stem noise selects the fastest of the broadband frequencies 
(fl and 7) (i.e., the shortest times) in the EEG. (25'29'33'34) It is also well 
established that additive b-correlated white noise selectively destroys the 
longest periods of the period-doubling sequences with increasing noise 
amplitude in cubic nonlinear differential equations similar to the neural 
membrane equations studied in Fig. 1. (35) 

With functional, chemical, or anatomical impairment of brain stem 
neuronal noise influences on the EEG, the smallest frequencies (i.e., longest 
characteristic periods) come to dominate the record. These relatively 
stationary "slow-wave" states are associated with various degrees of impair- 
ment of consciousness, including episodes of automatic behavior (i.e., 
behavior without apparent awareness or memory for the event) and non- 
responsiveness to strong sensory stimuli. Typical records for representative 
syndromes are graphed in Fig. 4. 

These records demonstrate a particular kind of reduced complexity. 
Their statistical dynamical characteristics are more stationary than in the 
normal condition. This abnormal stationarity in brain states that are inconsis- 
tent with normal awake attentional brain function has led research groups 
more interested in measure-theoretic stability than in brain physiology to 
use cases of unusual EEG alpha stability, (2s'36) epilepsy, (37) sleep states, (38) 
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DEEP SLEEP 

PENTOTHAL ANESTHESIA 

PETIT MAL EPILEPSY 

METABOLIC COMA 

ONSET OF GRAND MAL SEIZURE 

POST SEIZURE COMA 

ALCOHOLIC STUPOR t ! 

one second scale = 200pv 

Fig. 4. Example of mostly pathological stationarity in electroencephalographic recordings of 
brain waves, microvolts (vertical scale) over time. This persistence in statistical patterns of 
variation in the EEG is not compatible with awake, alert consciousness, which demonstrates 
normal fluctuations at many time scales. These EEG patterns and their associated states are 
related to loss of sensitivity to or sources of brain stem noise driving of the neocortex. 

or patients with hereditary brain degenerative disorders who are in 
coma (39) as sources of data for making complexity measures, techniques 
which are then applied to a normal awake, nonstationary population. 

Discriminations between the kinds of records seen in Fig. 4 and 
normal awake states as in Fig. 5 can be made quite consistently by clinical 
neurologists through qualitative comparisons. On the other hand, efforts to 
deal with normal, nonstationary brain wave data sets with measures of 
dimension, expansivity, and entropies have led to much hand-wringing 
debate, (4~ the measures range widely in the same individuals (as they 
must, given our states of continually varying attention), and do not speak 
for themselves with respect to their mechanistic meaning, and because the 
research that spawns them is not driven by theoretical mathematical 
hypotheses, the faint hints that may be in the data are readily overlooked. 

Another reason to consider a noisy fractal attractor hypothesis for the 
character of the global brain wave dynamical system is that while evidence 
suggests that the global dynamic is an attractor and studies are consistent 
with respect to its being a fractal set, not one study has proven it to be 
sensitive to initial conditions convincingly. Such dynamical structures have 
been named strange, nonchaotic attractors. (41) 

The definitional diagnostic triad for this dynamical state, then, is(42'43): 
(1) a noninteger, Hausdorff-derived, "dimensional" measure D on the 
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AWAKE WITHOUT STRONG c~ ~ ~  

AWAKE WITH STRONG ~ 

AWAKE WITH LOW VOLTAGE 

scale lOOp.v one second 

Correlation dimension (D2) = 4.7 - 6.3 

Leading Lyapounov exponent: ~ 0.014 • 0.02 
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Fig. 5. Measures addressing the question (unresolved): is the EEG a strange, nonchaotic 
attractor? These records are examples of normal, relaxed, awake brain wave patterns recorded 
from the midline of the head with varying amounts of e wave (10~12 Hz) dominance. The 
"fractal" correlation dimension on such records varies as indicated; the leading Lyapunov 
exponent is characteristically very low positive with large fluctuations (nonuniformity); the 
power law scaling of power spectral amplitudes, the N(a) plot, falls short of the criteria 
for a strange, nonchaotic attractor. See text for explication and references (data of 
Wally Prichard). 
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phase portrait or Poincar6 section of the attractor, generally, for a compact 
set M and decimation e, 

dimM ---- lim sup ln{N(e) }/In(e) 
~ 0  

(2) evidence for nonexpansiveness of the dynamics (in the mean), an 
estimate of the sensitivity to initial conditions in the general form of an 
exponential coefficient, the Lyapunov exponent, 

,~ = lim 1/n In ldx f  n 3xl 

in which dx is an estimate of the derivative with respect to x or, in higher 
dimension, the Jacobian matrix at x, f is the function being evaluated, and 
~x is a small perturbation or distance between orbits in the neighborhood 
of x; (3) scaling properties of the Fourier amplitude spectrum of the 
discrete Fourier transform of the time series of observables which 
characteristically have many peaks reflecting "wrinkled," sharp corners in 
the attractor. A useful measure of this property was found to be the 
spectral distribution function as the number of peaks, N(a), in the Fourier 
amplitude spectrum with amplitudes >a ,  which in a strange, nonchaotic 
attractor scales like N(~) -~ a -N, 1 < r/< 2. (42,43) 

Using the Wolf algorithm (44) for the computation of the average 
divergence rate of nearby initial conditions, the Lyapunov characteristic 
exponent ,~ (with a lag of five time steps At, 5At intervals between reini- 
tialization, six-dimensional embedding, and normalized to the interval 
[0, 2]), we found that values for the Pritchard data studied did not differ 
significantly from zero (see Fig. 5). The relatively high variance for these 
computations reflects (depending upon investigator orientation and bias) 
either the nonuniformity of expansion rates or the nonstationarity of the 
signal. Both reflect the reality of the neurophysiological correlates of these 
normally varying states of consciousness. 

Correlation dimension computations, D2, using a variety of embed- 
ding criteria and algorithms (45) lead to fractional values ranging from 4.5 to 
6.5 in awake states as in Fig. 5, with the records from some neocortical 
regions failing to converge. 

The In N(~) versus In ~r spectral distribution plot in Fig. 5 is indecisive 
with respect to discriminating strange nonchaotic from strange chaotic 
attractors, (46) with the left side of the function reflecting a power law of 
r/< 1 and the right side, 1 < t /< 2. Truncating the function as others have 
done (43'46) would lead in the direction of the latter. 

Of interest with respect to the issue of strange nonchaotic attractors 
and the representativeness of the attractor of Fig. 1 is the Rapp brain-wave 
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Fig. 6. Thickened folds in a phase portrait of a two-dimensional projection of an eight- 
dimensional embedding of an EEG record from a relaxed awake subject after the record was 
reduced to its relevant topological manifold by singular value decomposition. The Rapp 
awake attractor has a qualitative similarity, with respect to these features, with the model 
portrayed in Fig. 1. See text for references. 

phase-space attractor (45) from waking brain wave records, The EEG time 
series is projected into R 2 following a suitably lagged embedding in eight- 
dimensional space after singular value decomposition (equivalent to a 
reduction to a topological manifold (47)) and orthogonal rotation. Its 
"thickened" and near singular turning points (Fig. 6) suggest the wrinkles 
of our model at the strange nonchaotic border of chaos as in Fig. 1. 

5. S IMULTANEOUS SLOW PERIODIC AND FAST NOISE 
DRIVING OF THE S A M E  NEOCORTICAL REGION BY 
NEIGHBORING BRAIN STEM CELLS 

Consistent with the brain-stem, neuronal noise-regulated, neocortical 
brain-wave model of the EEG-defined states of consciousness as depicted in 
Fig. 1, a physiologically significant example of the anatomical juxtaposition 
of sources of slow periodic and fast noise driving of the same neocortical 
areas has been demonstrated in the dorsal raphe nucleus of the (mesen- 
cephalic) brain stem. (48'49) Figure 7 portrays the shapes of the interspike 
interval density distributions, their "coherence" in plots of predicted versus 
observed values of polynomial fits with a five-interspike-interval lag, and 
the phase portrait of the two cells, each embedded in three dimensions. The 
differences between the time scales of the cell types range from two to three 
orders of magnitude, as do those in the model. 

Simultaneous recordings of a fast frequency noise cell and hippo- 
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campal  brain waves (Kocsis and Vertes, in preparat ion)  demonstra te  that  
differences in the (auto)correlat ion time without  changes in the mean inter- 
spike interval of  dorsal  raphe fast noise cells are associated with a change 
in the pat tern of  power spectral peaks of the h ippocampal  E E G  (Fig. 8). 

We have not  noted the digitization, sample length, and frequency 
details in either plot, in that their geometries are sufficiently meaningful in 
this context, and we would be unable to provide a meaningful account  of 
these details without  sufficient development,  for which there is insufficient 
room here. We have treated both  states identically. 

We would conjecture that  a strange, nonchaot ic  attractor,  dwell-time, 
autocorrelat ion-as-distr ibut ion model  is relevant at both  the level of the 

Fig. 7. Slow periodic and fast noise driving of the global membrane brain wave relaxation 
oscillator. Two neighboring neurons in the dorsal raphe nucleus of the rat whose axons pro- 
ject to the same areas of the neocortex. One is slow and nearly periodic (left), and the other 
is faster and more irregular. The density distributions, the polynomial predictability, and the 
three-dimensional phase portrait of the interspike interval time series from each cell describe 
these properties. (Data of JoAnn Carlsson, Stephen Foote, Bernat Kocsis and Robert Vertes.) 
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i n d iv idua l  d o r s a l  r a p h e  n e u r o n  noise  source  a n d  tha t  of  the  g loba l  b r a i n  

w a v e  n e u r o n a l  m e m b r a n e  sub jec ted  to  the  inf luence  of  b r a i n  s tem dr iv ing.  

W e  s u p p o r t  this c o n j e c t u r e  wi th  the  a r g u m e n t s  p r e sen t ed  here  a n d  the 

m a n y  classical  e x p e r i m e n t s  d e m o n s t r a t i n g  the  loss of  the  n o r m a l  E E G  

m o d e s  a n d  fa i lures  in a t t e n t i o n a l  tasks  wi th  b r a i n  s tem d a m a g e ,  and  

the  t e m p o r a r y  reversa l  of  these  defici ts  w i th  n o i s e - s i m u l a t i n g  e lec t r ica l  
stimulation. (29, 50) 

Fig. 8. An example of brain stem noise selection/stabilization of patterns in brain wave 
modes? Changes in the autocorrelation graph of the time series of interspike intervals of a 
dorsal raphe fast noise cell is associated with a change in the power spectrum of the EEG as 
recorded from the rat hippocampus to which it projects. The rat is in (nondreaming) sleep 
during the left recording, awake in the right recording. Note that whereas there is not a 
significant difference in the mean and second moment of the interspike intervals between these 
two states, the fourth moment difference is consistent with the change in the autocorrelation 
graph. Note also that the cross-correlation of the time series of the brain stem neuron 
interspike interval and hippocampal (digitized) brain wave signals did not change. (Data of 
Bernat Kocsis and Robert Vertes.) 
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